is a type of exercise training designed to produce fast, powerful movements, and improve the functions of the nervous system, generally for the purpose of improving performance in a specific sport. Plyometric movements, in which a muscle is loaded and then contracted in rapid sequence, use the strength, elasticity and innervation of muscle and as it was supposed to be surrounding tissues to jump higher, run faster, throw farther, or hit harder, depending on the desired training goal. Plyometrics is used to increase the speed or force of muscular contractions, often with the goal of increasing the height of a jump or the speed of a punch or throw.
Procedure
Plyometric training involves practicing plyometric movements to toughen tissues and train nerve cells to stimulate a specific pattern of muscle contraction so the muscle generates as strong a contraction as possible in the shortest amount of time. A plyometric contraction involves first a rapid muscle lengthening movement, followed by a short resting phase, then an explosive muscle shortening movement, which enables the muscles that work together in doing the particular motion. Plyometric training engages the myostatic-reflex, which is the automatic contraction of muscle when their stretch nerve receptors are stimulated.
Plyometric exercises use explosive movements to develop muscular power, the ability to generate a large amount of force quickly. Plyometric training acts on the nerves, muscles, and tendons to increase an athlete's power output without necessarily increasing their maximum strength.
Physics of plyometrics
Muscular power is determined by how long it takes for strength to be converted into speed. The ability to convert strength to speed in a very short time allows for athletic movements beyond what raw strength will allow. Thus an athlete who has strong legs and can perform the freeweight squat with extremely heavy weights over a long duration may get less distance on a standing long jump or height on a vertical leap than a weaker athlete who is able to generate a smaller amount of force but in a shorter amount of time. The plyometrically trained athlete may have a lower maximal force output, and thus may not squat as much, but his training allows him to shorten the amount of time required to reach his maximum force output, leading to more power from each contraction.
Muscle-tendon component
For a muscle to cause movement, it must shorten; this is known as a concentric contraction. There is a maximum amount of force with which a certain muscle can concentrically contract. However, if the muscle is lengthened while loaded (eccentric contraction) just prior to the contraction, it will produce greater force through the storage of elastic energy. This effect requires that the transition time between eccentric contraction and concentric contraction (amortisation phase) be very short. This energy dissipates rapidly, so the following concentric contraction must rapidly follow the eccentric stretch. The process is frequently referred to as the "stretch shortening cycle", and is one of the underlying mechanisms of plyometric training. Usually after ploymetric exercise the tendon streches and the thighs and quadracepts feel tender.
Neurological component
In addition to the elastic-recoil of the musculotendonous system there is a neurological component. The stretch shortening cycle affects the sensory response of the muscle spindles and golgi tendon organs (GTO). It is believed that during plyometric exercise, the excitatory threshold of the GTO's is increased, making them less likely to send signals to limit force production when the muscle has increased tension. This facilitates greater contraction force than normal strength or power exercise, and thus greater training ability.
The muscle spindles are involved in the stretch reflex and are triggered by rapid lengthening of the muscle as well as absolute length. At the end of the rapid eccentric contraction, the muscle has reached a great length at a high velocity. This may cause the muscle spindle to enact a powerful stretch reflex, further enhancing the power of the following concentric contraction. The muscle spindle's sensitivity to velocity is another reason why the amortisation phase must be brief for a plyometric effect.
A longer term neurological component involves training the muscles to contract more quickly and powerfully by altering the timing and firing rates of the motor units. During a normal contraction, motor units peak in a de-synchronized fashion until tetany is reached. Plyometric training conditions the neurons to contract with a single powerful surge rather than several disorganized contractions. The result is a stronger, faster contraction allowing a heavy load (such as the body) to be moved quickly and forcefully.
Safety considerations
Plyometric exercises involve an increased risk of injury due to the large forces generated during training and performance, and should only be performed by well-conditioned individuals who are under supervision. Good levels of physical strength, flexibility and proprioception should be achieved before commencement of plyometric training.
The specified minimum strength requirement varies depending on where the information is sourced and the intensity of the plyometrics to be performed. Chu (1998) recommends that a participant be able to perform 5 repetitions of the squat exercise at 60% of their bodyweight before doing plyometrics. Core body (trunk) strength is also important.
Flexibility is required both for injury prevention and to enhance the effect of the stretch shortening cycle.
Proprioception is an important component of balance, coordination and agility, which are also required for safe performance of plyometric exercises.
Further safety considerations include:
Click here Video Plyometric-Jumping
Click here for Video Plyometric-Push up
Procedure
Plyometric training involves practicing plyometric movements to toughen tissues and train nerve cells to stimulate a specific pattern of muscle contraction so the muscle generates as strong a contraction as possible in the shortest amount of time. A plyometric contraction involves first a rapid muscle lengthening movement, followed by a short resting phase, then an explosive muscle shortening movement, which enables the muscles that work together in doing the particular motion. Plyometric training engages the myostatic-reflex, which is the automatic contraction of muscle when their stretch nerve receptors are stimulated.
Plyometric exercises use explosive movements to develop muscular power, the ability to generate a large amount of force quickly. Plyometric training acts on the nerves, muscles, and tendons to increase an athlete's power output without necessarily increasing their maximum strength.
Physics of plyometrics
Muscular power is determined by how long it takes for strength to be converted into speed. The ability to convert strength to speed in a very short time allows for athletic movements beyond what raw strength will allow. Thus an athlete who has strong legs and can perform the freeweight squat with extremely heavy weights over a long duration may get less distance on a standing long jump or height on a vertical leap than a weaker athlete who is able to generate a smaller amount of force but in a shorter amount of time. The plyometrically trained athlete may have a lower maximal force output, and thus may not squat as much, but his training allows him to shorten the amount of time required to reach his maximum force output, leading to more power from each contraction.
Muscle-tendon component
For a muscle to cause movement, it must shorten; this is known as a concentric contraction. There is a maximum amount of force with which a certain muscle can concentrically contract. However, if the muscle is lengthened while loaded (eccentric contraction) just prior to the contraction, it will produce greater force through the storage of elastic energy. This effect requires that the transition time between eccentric contraction and concentric contraction (amortisation phase) be very short. This energy dissipates rapidly, so the following concentric contraction must rapidly follow the eccentric stretch. The process is frequently referred to as the "stretch shortening cycle", and is one of the underlying mechanisms of plyometric training. Usually after ploymetric exercise the tendon streches and the thighs and quadracepts feel tender.
Neurological component
In addition to the elastic-recoil of the musculotendonous system there is a neurological component. The stretch shortening cycle affects the sensory response of the muscle spindles and golgi tendon organs (GTO). It is believed that during plyometric exercise, the excitatory threshold of the GTO's is increased, making them less likely to send signals to limit force production when the muscle has increased tension. This facilitates greater contraction force than normal strength or power exercise, and thus greater training ability.
The muscle spindles are involved in the stretch reflex and are triggered by rapid lengthening of the muscle as well as absolute length. At the end of the rapid eccentric contraction, the muscle has reached a great length at a high velocity. This may cause the muscle spindle to enact a powerful stretch reflex, further enhancing the power of the following concentric contraction. The muscle spindle's sensitivity to velocity is another reason why the amortisation phase must be brief for a plyometric effect.
A longer term neurological component involves training the muscles to contract more quickly and powerfully by altering the timing and firing rates of the motor units. During a normal contraction, motor units peak in a de-synchronized fashion until tetany is reached. Plyometric training conditions the neurons to contract with a single powerful surge rather than several disorganized contractions. The result is a stronger, faster contraction allowing a heavy load (such as the body) to be moved quickly and forcefully.
Safety considerations
Plyometric exercises involve an increased risk of injury due to the large forces generated during training and performance, and should only be performed by well-conditioned individuals who are under supervision. Good levels of physical strength, flexibility and proprioception should be achieved before commencement of plyometric training.
The specified minimum strength requirement varies depending on where the information is sourced and the intensity of the plyometrics to be performed. Chu (1998) recommends that a participant be able to perform 5 repetitions of the squat exercise at 60% of their bodyweight before doing plyometrics. Core body (trunk) strength is also important.
Flexibility is required both for injury prevention and to enhance the effect of the stretch shortening cycle.
Proprioception is an important component of balance, coordination and agility, which are also required for safe performance of plyometric exercises.
Further safety considerations include:
- Age - low-intensity and low-volume only for athletes under the age of 13 or for athletes who squat less than 1.5 times their bodyweight.
- Surface - some degree of softness is needed. Gymnastics mats are ideal, grass is suitable. Hard surfaces such as concrete should never be used.
- Bodyweight - athletes who are over 240 pounds (109 kg) should be very careful and low-intensity plyometric exercises should be selected.
- Technique - most importantly, a participant must be instructed on proper technique before commencing any plyometric exercise. They should be well rested and free of injury in any of the limbs to be exercised.
Click here Video Plyometric-Jumping
Click here for Video Plyometric-Push up
source: wikipedia
Comments